

2018 Annual Merit Review

Cummins/Peterbilt SuperTruck II

Michael Ruth – Principle Investigator, Cummins Inc.

Ken Damon – Peterbilt Motors Company

21 June 2018

Project ID:ACS102

Overview

<u>Timeline</u>

Begin: 10/1/2016

End: 9/30/2021

30% complete (03/18)

Barriers

Engine Efficiency ≥ 55% BTE

Freight Efficiency ≥ 100% FTE

Cost effective solutions

<u>Budget</u>

Total Project: \$40M

\$20M DoE - \$20M Partners

Total Spent: \$13.6M

\$6.8 = Partners

\$6.8 = DoE

<u>Partners</u>

Cummins - Powertrain

Eaton - Transmission

Peterbilt - Vehicle

Bridgestone – Tires

Walmart - Customer counsel

Objectives

- ■Demonstrate a <u>minimum</u> of 55% BTE at a 65 mph cruise, on an engine dynamometer test stand
 - Same engine systems also demonstrated in vehicle, operating on real world drive cycles
- Achieve a <u>minimum</u> of 125% Freight Ton Efficiency (FTE).
 - FTE = MPG*Tons of Freight
- Track, promote and report on cost effective solutions
 - Prioritize solutions that have ~3 year payback period
 - Utilize customer counsel for understanding payback variables

Relevance

- Approximately 20% of U.S. transportation petroleum goes to the production of heavy truck fuel. Proposed improvements would save more than 400 million barrels of oil per year.*
 - Reduce imports and improve energy security
 - Reduce the cost of moving goods
- Heavy Truck GHG emissions account for a CO2 equivalent 420.7 MMT per year (35th edition of the Transportation Energy Data Book).
 - Improved air quality
 - Protect the public health and environment

^{*} https://energy.gov/eere/vehicles/vehicle-technologies-office-moving-america-forward-energy-efficient-vehicles

Technical Approach

Prestolite

PURDUE

MERITOR

Milestones by Quarter

FY 2018	Description
✓ Mule tire samples built	Tire samples built and tested, model data confirmed and included in overall system model
✓ Weight budget confirmed	Chassis, cab/sleeper, trailer and powertrain targets established
Base engine at 50% BTE	Dynamometer demonstration of base engine at 50% BTE
Cooling system direction confirmed	Cooling system simulation with various routes and ambient conditions

Milestones by Quarter

FY 2019	Description
Final Cd via simulation, confirmed	Final adjustment required for produce ability of prototype hardware
Tire RRC confirmed/tested	On-Road/Rig data
ACEM Features selected	Inertia restart, Coasting feature, weather, etc included in mule testing and validation
HHRR combustion system and Low voltage hybrid	New combustion system for final demonstration and 12/48V system for energy recovery

Program Milestones

All proposed future work is subject to change based on funding levels

Cummins Powertrain

ENGINE

TRANSMISSION

DRIVE AXLE

Technical Approach – SuperTruck II Target –

Energy recovery, Vehicle Aero, Tires, Transmission, Axle

Accomplishments Powertrain Integration

Accomplishments Cummins Energy Recovery Drive (CERD)

Peterbilt

A seamlessly integrated, high efficiency, reliable, hybrid powertrain package

Accomplishments Progress toward 50% BTE Milestone

New Platform Engine, without WHR system

- Target Mech Eff'y = 94.7% Closed Cycle = 53% Open Cycle = 100%
- April 2018 status (47.8%)

- Technology yet to be applied
 - Variable oil pump
 - Variable coolant pump
 - High Heat Release Rate fuel system
 - Increased Compression Ratio
 - Low Friction Rings
 - Conversion to LP EGR configuration
 - Fixed geometry turbine
 - Elimination of HP EGR requiring engine dp

Accomplishments Engine System Friction Reduction

Accomplishments Closed Cycle Efficiency (CCE)

Crank Angle (deg)

ST2 Freight Efficiency Powertrain Path-to-Target

Accomplishments Disengage-able Tandem Technology

TECHNOLOGY OVERVIEW

FEATURES & BENEFITS

Efficiency

0.4% Fuel Economy improvement vs base

Gradeabilty

38% Dry; 27% Wet

Weight

Minimal weight impact anticipated

Up Time

1.2M mi target B10 life

TECHNOLOGY/DEVELOPMENT DETAILS

- Technical Description
 - Traction in low speed operation
 - Disengages forward pinion and axle shafts at highway speed
 - Eliminates forward axle churning and gear losses
 - Accommodates "fast" ratios (<2:1)
 - Overrides for weather conditions
 - Lightweight aluminium components
 - Customer acceptance vs 6x2
- Development Timeline
 - Mule build for road test mid-2018
 - On road development 2019
 - Demonstration vehicle build 2020

Accomplishments Advanced Cycle Efficiency Manager

- Serve as the Powertrain Supervisor
 - coordinates the vehicle cruise speed
 - transmission power paths
 - engine on/off state

- Dynamically optimize commands to power producers (engine, waste heat recovery, electric machine)
- Manages battery system

Accomplishments BTE Path to Target

Mechanical Improvements Cruise Power Reduction Platform Change

Combustion System

Waste Heat Recovery Aftertreatment

Proposed Future Research

- Technology application costing
 - Printed part technology applications for low heat transfer piston and cylinder kit engine testing
 - Design and manufacturing alternatives for low heat transfer components
- LP EGR control strategy for FE/NOx optimization
 - Controller logic development for an inner and outer loop control strategy – transient performance and FE
- •Mild hybrid system optimization
 - Continued simulation work for operating controls
 - Powertrain mule for road testing for added opportunities

All proposed future work is subject to change based on funding levels

Technical Approach

Parasitic Reduction

Aerodynamics

Lightweighting

Accomplishments

Path To Freight Efficiency Target –

Technical Approach

Technical Approach

- Advanced Vehicle Shape
- Reduced Vehicle X-Section
- Trailer Gap Treatment
- Yaw Mitigation Techniques
- Advanced Speed Control

Advanced Speed Control

Technical Progress

- 15% Drag Reduction Goal (vs. ST1)
- 20% Improvement Analytically Achieved; Theme Selected
- 5-10% Bonus Opportunity Under Evaluation

Technical Progress – Reduced Vehicle X-Sect –

- Tractor/Trailer Suspension Lowering at Speed
- Improved Drag Profile and Ground Sealing
- Targeting 4" Height Delta
- Achievement is on Track

Technical Progress – Trailer Gap, Yaw Mitigation –

- Drag Evaluation Commonly at 0 and 6°
- 6° Equates to ~7mph Crosswind
- Significant Areas of Country Well Above 7mph

Technical Progress –Yaw Mitigation, Speed Control –

Technical Approach

Parasitic Loss Reduction –

- Tires are 48% of ST1 Motoring Losses
- Majority of Losses via Tread
- Improve Rolling Resistance (Crr)
 - Reduced Strain from Tread Distortion
 - Losses via Deformation and Recovery Energy
 - Optimized Tread Volume
 - Alternate Tire Size

Technical Approach – Parasitic Loss Reduction –

- Partnership with Bridgestone
- Three Tire Positions
 - (1) Steer
 - (2) Drive
 - (3) Trailer
- Tire Technology for Duals
- 30% Crr Reduction Target
- 6% Improved Fuel Economy
- Tire Size Evaluation

Technical Progress – Parasitic Loss Reduction –

- Mule Tires Developed
 - 50% to Crr Target
- New Tread Pattern Complete
 - Improved Crr
 - Wear Paradigm
- Final Tire Size Selected
 - 285/75R24.5 (Baseline: 295/75R22.5)
 - 2" Larger Wheel Diameter
- Demo Tire Compound Technologies
 - 10% Additional Crr Reduction
- Initiated Patterns for Demo Tires

Technical Approach

- Trailer Development -

- Integrated Trailer Solutions
- 2000lb Reduction vs. Baseline

 Designs Vetted w/ Customer Counsel

Technical Progress

Lightweighting (vs. Baseline) –

System	Weight Delta (lbs)
Powertrain/Cooling	(285)
Chassis Systems	(1540)
Outer Body	(150)
Energy Storage	(615)
Trailer	(2095)
TOTAL	(4685)

Commercial Focus

Develop

- Focus on Technology Vetting
- Integrate into Demonstration Vehicle
- Feed Product Development Pipeline

Harvest

- Deploy Features/Options
- Robust/Competitive Product Profile

Deliver

- Regulatory Compliant Products
- High Value for the Market

Comments from 2017

- Has the team considered the use of Ultra Capacitors for the Energy Storage System Aerodynamic Drag Ahead of Target?
- Answer: Yes, Ultra Capacitor will be our prime start source.
- Why was WHR benefit only 0.2% BTE?
- Answer: WHR total benefit to BTE will be greater than 4%.
 The arrangement used in SuperTruck II will be at least 0.2% greater than what was used on Cummins previous projects.
- Is Purdue a partner on the Cummins/Peterbilt SuperTruck 2 project?
- Answer: Purdue is a supplier for the project. Purdue is building a vehicle model in Autonomie in order to have a traceable model for partners and suppliers to vet technology options.

Program Summary

- Powertrain
 - Engine development on plan toward BTE targets
 - Powertrain Targets on Plan to meet FTE
 - Technology in Place for Successful Mule Vehicle Build
- Vehicle
 - Outer Body Theme Selected
 - Aerodynamic Drag Ahead of Target
 - Mule/Technology Truck Build Scheduled (August 2018)
 - Mule Tires Built; 50% to Final Crr Target
 - Final Tire Size and Technology Path to Target Identified
 - Tractor/Trailer Lightweighting Ahead of Target
- Cummins and Peterbilt will deliver a minimum 125% FTE and 55% BTE!

THANK YOU!

QUESTIONS